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Bayesian inference with intractable likelihoods

Data generating model

Prior: π(θ)

Likelihood: fθ(z), such that z = {z1, . . . , zd} can be simulated from fθ

Inverse problem goal

Estimation of θ given a unique observation y = {y1, . . . , yd}

Posterior: π(θ | y) ∝ π(θ)fθ(y)

What if fθ is not tractable, not available, too costly?
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Approximate Bayesian Computation (ABC)

Goal: get a θ sample from π(· | y)

Simulate M iid (θm , zm) for m = 1 :M

1. θm ∼ π(θ)

2. zm | θm ∼ fθm

3. Keep θm if D(y, zm) < ε

D(y, zm) = ‖y − zm‖ or ‖s(y)− s(zm)‖

s is a summary statistic

−→ Which choice for D? for s?
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Summary statistics and distances

1. Summary-based procedures

−→ Replace ‖y − zm‖ by ‖s(y)− s(zm)‖

• Pros: Dimension reduction

• Cons: Arbitrary s, loss of information

−→ Semi-automatic ABC [Fearnhead & Prangle, 2012]: prelim learning step, d small

2. Data discrepancy-based procedures

−→ Replace ‖y − zm‖ by distance between empirical distributions

- Maximum Mean Discrepancy [Park et al, 2016]

- Kullback–Leibler [Jiang et al, 2018]

- Classification accuracy [Gutmann et al, 2018]

- Wasserstein distance [Bernton & al 2019]

- Energy distance: [Nguyen & al 2020]

• Pros: Does not require summary statistics

• Cons: Requires moderately large samples, not available in inverse problems
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Key idea

• ABC posterior (Bayes’ theorem):

πε(θ | y) ∝ π(θ)
∫
Y
1I{D(y,z)≤ε} fθ(z) dz ∝

∫
Y
1I{D(y,z)≤ε} π(θ | z) π(z) dz

• Our ABC posterior: replace D(y, z) by D(π(· | y), π(· | z)), where D is now a distance
on distributions

qε(θ | y) ∝
∫
Y
1I{D(π(·|y),π(·|z))≤ε}π(θ | z)π(z)dz

Theorem 1 [Forbes et al] qε(· | y)→ π(· | y) in total variation when ε→ 0

Intuition of the proof:

When ε→ 0, {z ∈ Y, D (π(· | y), π(· | z)) ≤ ε} → {z ∈ Y, π( · | z) = π( · | y)}∫
Y
1I{D(π(·|y),π(·|z))≤ε}π (θ | z)π (z) dz→

∫
Y
1I{π( ·|z)=π( ·|y)}π (θ | z)π (z) dz ∝ π (θ | y)

In practice: replace the unknown π(· | y) by an estimate
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Surrogate posteriors as Gaussian mixtures

Gaussian Locally Linear mapping (GLLiM) model [Deleforge et al, 2015]

• provides a posterior for each y within parametric family {pG(θ | y;φ),φ ∈ Φ}

• captures link between y and θ with mixture of K affine components

pG(θ | y;φ) =
K∑
k=1

ηk(y)N (θ;Aky + bk,Σk)

Fit GLLiM model with a simulated learning set DN = {(θn,yn), n = 1 : N}

Parameters φ∗K,N = {π∗k, c
∗
k,Γ
∗
k,A

∗
k,b
∗
k,Σ

∗
k}
K
k=1 learned with EM algorithm

y space θ space
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Extended semi-automatic ABC: 3 variants of GLLiM-ABC

GLLiM surrogate posterior pG(θ | y;φ) =
K∑
k=1

ηk(y)N (θ;Aky + bk,Σk)

• Variant 1: approximate E[θ | z] with EG[θ | y;φ∗K,N ]

→
∑K
k=1 η

∗
k(y)(A

∗
ky + b∗k)

• Variant 2: add the log posterior variances VarG[θ | y;φ∗K,N ]

→
∑K
k=1 η

∗
k(y)

[
Σ∗k + (A∗ky + b∗k)(A

∗
ky + b∗k)

>]− EG[θ | y;φ∗K,N ]EG[θ | y;φ∗K,N ]>

• Variant 3: use full pG(θ | y;φ∗K,N )

→ requires a metric for Gaussian mixtures

Mixture Wasserstein distance (MW2) [Delon & Desolneux 2020]

L2 distance

Julyan Arbel GLLiM-ABC 8 / 15



GLLiM-ABC procedures

1: Inverse operator learning
Apply GLLiM on simulated set DN = {(θi, zi), i = 1 : N} to get pG(θ | z,φ∗K,N )

2: Distances computation
For another simulated set EM = {(θm, zm),m = 1 :M} and a given observed y, do

Vector summary statistics
Variant 1: GLLiM-E-ABC: Compute GLLiM expectation
Variant 2: GLLiM-EV-ABC: Compute GLLiM expectation and log variance
Compute standard distances between summary statistics

Functional summary statistics
Variant 3: GLLiM-MW2-ABC: Compute MW2(pG(· | zm;φ∗K,N ), pG(· | y;φ∗K,N ))

Variant 3’: GLLiM-L2-ABC: Compute L2(pG(· | zm;φ∗K,N ), pG(· | y;φ∗K,N ))

3: Sample selection
Select the θm values that correspond to distances under ε threshold (rejection ABC) or
apply other ABC procedure (IS-ABC, MCMC-ABC, SMC-ABC)
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Convergence of our ABC posterior when ε→ 0, K,N →∞

ABC posterior qK,Nε (θ | y) ∝ π(θ)
∫
Y 1I{D(pK,N (·|y),pK,N (·|z))≤ε} fθ(z) dz

computed with surrogates {pK,N (· | y) = pK
(
· | y;φ∗K,N

)
: y ∈ Y,K ∈ N, N ∈ N}

where:
• φ∗K,N MLE from simulated data DN = {(θn,yn), n = 1 : N} generated from joint
• pK are K-component mixtures

Let DH denote Hellinger distance. Then under compactness assumptions on true data
generating process & additional “standard” assumptions:

Theorem 2 [Forbes et al, 2021] DH
(
qK,Nε (· | y) , π (· | y)

)
−−−−−−−−−→
ε→0,K,N→∞

0

Remark

- GLLiM involves multivariate unconstrained Gaussian distributions, does not satisfy
the conditions: pK,N cannot be replaced by pK,NG

- Truncated Gaussian distributions with constrained parameters can meet the
restrictions
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Illustration to sound source localisation

Multimodal posterior in inverse problem

Goal: find unknown location θ = (x, y) of a sound source from two microphones at known
positions m1 and m2 based on interaural time difference

ITD(θ) =
1

c
(‖θ −m1‖2 − ‖θ −m2‖2)

Synthetic example in a 2D scene: y ∼ S10(ITD(θ)1d, σ
2Id, ν) with σ2 = 0.01 and ν = 3

−→ Posterior distribution that concentrates around two hyperboloids
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Sound source localisation : two pairs of microphones & setting

Two pairs of microphones:

True source position in θ = (1.5, 1) either captured by
the first or the second microphone pair

Likelihood is a mixture of 2 single-pair components

Posterior exhibits 4 symmetric hyperbolas

Contours of the true posterior:

● ●

●

●

●

−2

−1

0

1

2

−2 −1 0 1 2
x

y

Setting:

• GLLiM: learning set N = 105, K number of Gaussians set to 20, isotropic constraint
(xLLiM package [Perthame et al, 2017])

• Rejection ABC: simulations M = 106, ε is 0.1% quantile of distance values→ 103 samples

Comparison of different (rejection ABC) procedures :

• Semi-automatic ABC (abctools R package [Nunes and Prangle, 2015])

• GLLiM-E-ABC: GLLiM expectations as summary stats (abc package [Csillery et al, 2012])

• GLLiM-EV-ABC: GLLiM expectations and log variances (abc package)

• GLLiM-L2-ABC and GLLiM-MW2-ABC (transport package [Schuhmacher et al, 2020])
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Sound source localisation : selected samples
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Conclusion

Extended semi-automatic ABC with surrogate posteriors in place of summary statistics

qε(θ | y) ∝ π(θ)
∫
Y
1I{D(π(·|y),π(·|z))≤ε}fθ(z)dz

Requirements:

1. Tractable, scalable model to learn surrogates (GLLiM up to d = 100-1000)

2. Metric between distributions: e.g. L2, MW2

First results and conclusions:

• No need to choose summary statistics

• (Restricted) convergence result to the true posterior

• Outperforms competitors for multimodal posteriors

Perspectives:

• Other learning schemes than GLLiM such as normalizing flows

• Extension to more-than-one-observation setting

• GLLiM-ABCp

Julyan Arbel GLLiM-ABC 14 / 15



Thank you for your attention!
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Convergence of the ABC quasi-posterior: Rejection ABC

Goal: sample approximately from π(θ | y) ∝ π(θ)fθ(y) using D(y, z) (D(s(y), s(z)))

Rejection ABC: replace intractable fθ by: Lε(y, θ) =

∫
Y
1I{D(y,z)<ε}fθ(z) dz

−→ ABC quasi-posterior: πε(θ | y) ∝ π(θ)
∫
Y
1I{D(y,z)<ε}fθ(z) dz

Convergence of the quasi-posterior to π(θ | y): intuition of the proof

when ε→ 0 then D(y, z)→ 0 so z→ y and {z ∈ Y, D(y, z) < ε} → {y}

π(θ)

∫
Y
1I{D(y,z)<ε}fθ(z) dz → π(θ)

∫
Y
1I{z=y}fθ(z) dz → π(θ)fθ(y)

Details in [Rubio & Johansen 2013, Prangle et al, 2018, Bernton et al, 2019]
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Semi-automatic ABC [Fearnhead & Prangle, 2012]

The posterior mean is the optimal (quadratic loss) summary : s(z) = E[θ | z]

→ Use a preliminary linear regression step to learn an approximation of E[θ | z] as a function of z

from DN = {(θn,yn), n = 1 : N} simulated from the true joint distribution

• Variant 1: replace linear regression by neural networks ... [Jiang et al, 2017, Wiqvist et al,
2019]

• Variant 2: add extra higher order moments (eg variances) in s

A natural idea mentioned (not implemented) in [Jiang et al, 2017]

→ Requires a procedure able to provide posterior moments at low cost

• Variant 3: replace s(z) by an approximation (surrogate) of π(θ | z)

Requires

→ a learning procedure able to provide tractable approximate posteriors
at low cost: Gaussian Locally Linear Mapping [Deleforge et al, 2015]

→ a tractable metric between distributions to compare them
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