Bayesian Likelihood Free Inference using Mixtures of Experts

Abstract

We extend Bayesian Synthetic Likelihood (BSL) methods to non-Gaussian approximations of the likelihood function. In this setting, we introduce Mixtures of Experts (MoEs), a class of neural network models, as surrogate likelihoods that exhibit desirable approximation theoretic properties. Moreover, MoEs can be estimated using Expectation-Maximization algorithm-based approaches, such as the Gaussian Locally Linear Mapping model estimators that we implement. Further, we provide theoretical evidence towards the ability of our procedure to estimate and approximate a wide range of likelihood functions. Through simulations, we demonstrate the superiority of our approach over existing BSL variants in terms of both posterior approximation accuracy and computational efficiency.

Publication
In International Joint Conference on Neural Networks, IJCNN 2024
TrungTin Nguyen
TrungTin Nguyen
Postdoctoral Research Fellow

A central theme of my research is data science at the intersection of statistical learning, machine learning and optimization.

Next
Previous